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STRESS WAVE PROPAGATION IN A TWO-LAYERED
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Abstract-This paper presents an elastodynamic solution for stress wave propagation in a two­
layered cylinder with initial interface pressure. The initial interface pressure in a layered cylinder is
expressed as the initial condition of an elastodynamic equilibrium equation. Elastodynamic equa­
tions of each separate hollow cylinder fulfilling the initial conditions are solved by means of a finite
Hankel transform and Laplace transform. The boundary conditions at the internal~xternal surface
and the interface continuity conditions are used to determine the unknown constants involved in
solution. Thus, an exact solution for stress wave propagation in a two-layered cylinder with initial
interface pressure is obtained.

INTRODUCTION

It is well known that the general solution for stress wave propagation in a hollow circular
cylinder is very useful in engineering applications, such as nondestructive evaluation of
material properties, flaw detection and determination of resonances. In the past, a number
of analytical solutions for stress wave propagation in a single solid structure made of one
medium have been presented by Torvik (1967), Achenbach and Fang (1970) and Pao
(1983). However, the stress wave propagation in a layered structure subjected to shocking
loading is still valuable to widely technological applications and is a more complex problem.
So far, the subject has not been studied as extensively as it should have been. During the
past few years, vibrations of layered shells have been studied by Yu (1960), Chu (1961),
Bieniek and Freudenthal (1962), and Jones and Whittier (1966). But, their solving method
based on a Timoshenko-type theory was limited to layered shell-type structures and was
only used to calculate vibrations in a layered structure. Recently, Wang and Gong (1992)
presented an elastodynamic solution for a layered cylinder without considering the initial
interface pressure.

In this paper, an exact solution for stress wave propagation in a two-layered cylinder
with initial interface pressure is derived and solved by means of the work of Wang and
Gong (1991) which presents an effectively finite Hankel transform method. At first, the
initial displacement and stress in a layered cylinder produced by initial interface pressure
are expressed as the initial conditions of the elastodynamic equation. Then, governing
equations for each layer of the cylinders are derived and solved. The solution comprises
quasi-static solution with unknown constants and a dynamic solution meeting the homo­
geneous boundary conditions of each separate layer. From the boundary conditions and
the interface continuity conditions of a layered cylinder, we can easily determine the
unknown constants involved in the solution. Therefore, an exact solution for stress wave
propagation in a two-layered cylinder with initial interface pressure is obtained. Through
two examples, we demonstrate that the present method is simple, effective and correct.

THE INITIAL STATE OF A TWO·LAYERED CYLINDER

Consider a two-layered cylinder with initial interface pressure, composed oftwo hollow
cylinders by means of a heat-assembling method. The initial interface pressure is caused by
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Fig. I. The geometry of a two-layered cylinder.

the assembling pressure. The geometry of a two-layered cylinder is shown in Fig. I, where
a is specified as the internal radius of the first layer cylinder and b is specified as the external
radius of the second layer cylinder. The interface radius of the layered cylinder is shown as
boo Before two hollow cylinders are assembled, there is b,-a2 = <5 0 , where b l and a2are
specified as the external radius of the first layer cylinder and the internal radius of the
second layer cylinder, respectively.

Applying static elasticity theory, we can describe the assembling pressure (the interface
pressure) as

where

b6 a2b5
VBI - ~------~- -- +-------

-2(A,+,u,)(a2-b6) 2,u,(a2- b6)'

b6 b2b5
VB2 = 2CX;+ ,u2)(bi-=-bfJ + 2,u2(b2-b6)'

Ai' J.1i are specified as the Lames constants.
The initial displacement of the layered cylinder can be expressed as

(la)

(lb)

(Ic)

V~S<r) = [leA, + /)6(7='-b5) r+2,u--:f:~~b5) ~]PO,

V;s(r) = [2(f;+,u~)6(p_-bI)r+ 2~-;f:;~b5) ~]po, (bo ~ r ~ b).

(2a)

(2b)

ELASTODYNAMIC BASIC EQUATION AND SOLUTION

Consider a layered cylinder subjected to a uniformly distributed, time-dependent
interior pressure I/J(t). The present problem is considered to be axially symmetric and a
state of plane strain. The elastodynamic equations of the jth layered cylinder are found to
be

ai~r~bi' t~O+, (J=I,2),

(3)

where Vi = J(~i+iJ.1i)/0 is the wave speed and Pi is the mass density.
Considering that the layered cylinder with interface pressure is initially at rest, the

initial condition of eqn (3) is expressed as



Stress wave propagation

. . oUj(r, O)
UJ(r,O) = U~s(r), ot = O.
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(4)

It has been proposed that the general solution of the jth elastodynamic equation (3)
could be described in the following form :

Uj(r, t) = U{(r, t)+ U!J(r, t), (5)

where U{(r, t) is a quasi-static solution of eqn (3), which satisfies the following quasi-static
equation and initial condition:

oU{(r,O) = 0
U{(r,O) = U~s(r), ot .

The quasi-static solution of eqn (6) is derived as

U{(r, t) = U{t(r, t) + U~s(r),

where

(6)

(7)

(8a)

(8b,c)

t/J(t) is defined as the function of dynamic loading. The unknown constants D~ and D~ will
be determined by the boundary condition and the interface continuity condition of the
layered cylinder.

Substituting eqn (8) into (3) and utilizing eqns (4), (5), we have

W( 0) = oU!J(r, O) = 0
d r, ot '

(9a)

(9b)

(9c,d)

where U!J(r, t) is the solution ofthe inhomogeneous equation (9a) with zero initial conditions
(9b) and the homogeneous boundary conditions (9c, d). U{t in eqn (9a) is the known
function as shown in eqn (8). Ifwe define OM ~(, t) as the finite Hankel transform of U!J(r, t),
we will have

O!J(~{,t) = H[U!J(r,t)] = fj rU!J(r,t)CI(~{r) dr.
}

Then, by making use of the inverse of the transform, we have

where

(10)

(IIa)
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(lIb)

(11 c)

J 1(~fr) and Y, (~fr) are the first and second kind of first order Bessel functions, respectively.
~( are expressed as the positive roots of the following eigenequation by Wang and Gong
(1991) :

( 12a)

where

Y" = ~iY;(~ia)+hJ Y'(~ia), J" = ~J;(~ia)+hIJd~ia).

Y" ~iY;(~ib)+h2YI(~ih), 1" = ~J;(~ih)+h21,(U)),

( 12b--g)

Performing the finite Hankel transform of the inhomogeneous equation (9a), we have

2 l~. .. 2. " . , ~.. I rd 2 Oft d 2 'J
1t li [U{(bj ) +h~UHbj)] - ; [U{(aj) +11; U!t(aj l)- (~f)"UHW= vl Ldt C' + dt e ..

(13)

Because UMr, t) satisfies the homogeneous boundary conditions (9c, d), the first two terms
on the left-hand side of eqn (13) must equal zero. Thus, eqn (13) is reduced to

(14)

Performing the Laplace transform of eqn (14) and utilizing the initial conditions (II b).
we have

( (5)

where p is the parameter of the Laplace transform. The Laplace inverse transform of eqn
(15) gives

where

RI\ = {H[rJ}'P, RI~ = {HC]}·P,

P = -l{t(t) + ~!Vj f: l{t(r) sin WVj(t-r)] dr. (16a-c)

By substituting eqns (16) and (8) into (5), we can express the general solution of basic
eqns (3) and (4) as
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(17)

By making use of Hooke's law, geometry relations and eqn (17) we easily gain the
expressions of the dynamic stresses:

(18a)

(18b)

(18c)

The above expressions have four unknown constants D-{ and ~ (j = 1,2) which can be
determined from the boundary conditions and the interface continuity conditions of a two­
layered cylinder.

BOUNDARY AND CONTINUITY CONDITIONS

Supposing that there is a uniformly distributed, time-dependent interior pressure l/f(t),
we can describe the boundary conditions and the continuity conditions of a two-layered
cylinder as

u) (a, t) = l/f(t), u;(b, t) = 0,

U1(r, t)lr=bo = U2(r, t)lr=bo' u)(r, t)lr=bo = u;(r, t)lr=bo. (19a-d)

Substituting the expressions of stress and displacement (17), (18) into the boundary and
continuity conditions (19), we have the following equations which are used to determine
the unknown constants D-{ and D~ (j = 1, 2) :

(20a)

(20b)

(20c)

(20d)

Because there are four equations in (20), the four unknown constants D-{, D~, (j = 1,2)
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Fig. 2. Histories ofdynamic stresses without the effect ofrefiected waves. ii, = (1;/(10' (b-a)la = 10,
(hn-alla = 2. R = (r-alla. T V' tla.

can be easily determined. Thus, the dynamic displacements and the dynamic stresses in a
two-layered cylinder with initial interface pressure are obtained exactly.

EXAMPLES AND DISCUSSIONS

Considering that the internal boundary of a two-layered cylinder is subjected to a
suddenly exponential decay loading, we have

tjJ(t)

t < 0,

to> t ~ 0+, (21)

where (J 0 shows the amplitude of the dynamic loading and IX > 0 is a factor to indicate the
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Fig. 4. Distributions of dynamic stresses: iii = uJuo, (b-a)/a = 1, (bo-a)/a = 0.5, Rl = (r-a)/
V'l

(b-a), T = 2(b-a)'

rapidity of the decay. If IX is very large, (IX = 350,000), a suddenly exponential decay loading
will be approximately equal to a shocking load. In order to consider the initial interface
pressure having influence on dynamic stresses, we only calculate the two-layered cylinder
made of the same material. The material constants are A = J1. = 80 GPo, and V = 5000 m
S-I, respectively. The results of the numerical evaluation of stress wave propagation are
illustrated in Figs 2--4. In these figures we calculate two structures with (b-a)ja = 10,
(bo-a)ja = 2, and (b-a)ja = 1, (bo-a)ja = 0.5. The initial interface pressure of two
structures is Pojao = 0.5; ... expresses the initial stress at various locations.

The histories and distributions of the dynamic stresses for IX = 350,000 and
(b - a)ja = 10 are shown in Fig. 2. From curve 1 in Fig. 2(a) we can see that sudden decay
in interior pressure is approximately equivalent to a shocking load. Curve 2 in Fig. 2(a) and
the curves in Fig. 2(b) have clearly shown the features ofthe cylindrical waves propagating in
the cylinder with the initial stress field. The stress is approximately equal to the initial stress
before the arrival of the wavefront. A discontinuity at the wavefront and oscillations behind
the wavefront respond to the shocking load. It is observed that the dynamic stresses
approach the initial stresses when T is large. The propagation of the wavefront in the
cylinder with the initial stress fields is similar to that in the cylinder with the zero initial
condition (Wang and Gong, 1991). It is concluded that the solution is correct.

Because of the effects of reflected waves we observe that the histories of dynamic
stresses in a cylinder with the initial stress fields and (b-a)ja = 1 in Fig. 3 are different
from those in Fig. 2. In this case, when the dynamic load disappeared, the oscillations
were still accompanied by the stress waves propagating between the interior and exterior
boundary, where the reflected waves are produced successively upon the arrival of the
incident waves. It is worthwhile noting that the oscillations of compression stress waves in
the initial stress field will sometimes cause the radial tension stress.

Figure 4 shows that the distributions ofdynamic stresses along the radius r vary rapidly
with time T. The distributions of radial and tangential stresses are shown in Fig. 4. From
Fig. 4, we observe that the distributions of the dynamic stresses at the time the wavefront
proceeds from the internal surface to the outer is obviously different from that at the time
of the wavefront proceeding from the external surface to the inner. The phenomenon is
mainly in relation to the interference of the initial stress field and is very interesting.

Finally, we conclude that the major accomplishment of this study has been in gaining
a better solution method for the stress wave propagation in a two-layered cylinder with
initial interface pressure. The analysis may be applied to a wide range of structure analyses
in consideration of dynamic effects.
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